
JomiTech TwineCompile 
 

TwineCompile is our solution to slow C++ compile times. Integrating directly into the C++Builder IDE, it dramatically 

reduces the compile/make/build times by employing techniques such as multithreading, file caching, and automatic 

background compiling. 

TwineCompile is not a C++ compiler, but wraps the Embarcadero classic and CLANG compilers with a build system that 

optimizes how files and projects are built, resulting in significantly faster compile times. 

 

IDE Support 
TwineCompile available via the GetIt Package Manager only supports the IDE in which it is installed. To get support for 

older IDEs or IDEs without an active update subscription, a license can be purchased from JomiTech. 

TwineCompile 5.x supports C++Builder 10.2 through to C++Builder 10.4.1 

TwineCompile 4.x supports C++Builder 5 through to C++Builder 10.1 

Contact JomiTech support to gain access to TwineCompile 4.x. 

Installation 
The TwineCompile installer automatically performs the following actions as part of the installation process: 

 Copying necessary support files 

 Registering MSBuild assemblies into the GAC 

 Adding TwineCompile as a plugin in the RAD Studio C++ personalities available to the current user 

Manual Plugin Registration 
If the user account executing the installer is not the user that will be used to run C++Builder, it will be necessary to 

manually register the plugin for the appropriate user account. This can occur when a separate administrator user 

account is used for software installations. 

For example, to manually register TwineCompile into C++Builder 10.4: 



1. Open regedit and navigate to 

HKEY_CURRENT_USER\SOFTWARE\Embarcadero\BDS\21.0\Known IDE Packages\CBuilder 

 

2. Create a new string value. Name it C:\Program Files (x86)\JomiTech\TwineCompile\TwineCompilePlugin104.bpl 

and put TwineCompile as the value 

 

3. Restart the IDE 

Using TwineCompile 
The TwineCompile plugin will hook the IDE compile/make/build commands so that TwineCompile is used for all 

compiles. 

Configuring TwineCompile 
Use the TwineCompile Options, located in the TwineCompile menu, to configure various aspects of TwineCompile 

including: 

 Enabling / disabling TwineCompile. When TwineCompile is disabled, the IDE will perform all the 

compile/make/build commands, just as if TwineCompile was not installed. 

 Configuring the priority and resource consumption of the compile process. 

 Various IDE plugin options including colors and behaviours. 

 Automatic background compilation 

 Build notifications 

Command-Line and Automated Builds 

JTMake 
The easiest and simplest way to use TwineCompile to build your C++Builder projects is to use the jtmake tool that is 

bundled as part of the TwineCompile installation. Add the TwineCompile directory into your PATH environment 

variables and then execute jtmake as follows: 

jtmake [options] ProjectName.cbproj 

Or alternatively, to build an entire project group: 

jtmake [options] ProjectGroup.groupproj 

Where options can be one or more of the following options: 

-c"Config Name" Use the specified project configuration instead of the active project 
configuration. 

-B Build the project/project group instead of making it. 

-D<Defines> Add extra defines to compiler options. 

-FVX.X.X.X Set file version information to the specified values. 

-ideX Use this option to tell TwineCompile what compiler version to use when 
compiling. 
 
-ide5 – C++Builder 5 
-ide6 – C++Builder 6 
-ide2006 – C++Builder 2006 
-ide2007 – C++Builder 2007 
-ide2009 – C++Builder 2009 
-ide2010 – C++Builder 2010 



-idexe – C++Builder XE 
-idexe2 – C++Builder XE 2 
-idexe3 – C++Builder XE 3 
-idexe4 – C++Builder XE 4 
-idexe5 – C++Builder XE 5 
-idexe6 – C++Builder XE 6 
-idexe7 – C++Builder XE 7 
-idexe8 – C++Builder XE 8 
-ide10 – C++Builder 10.0 
-ide101 – C++Builder 10.1 
-ide102 – C++Builder 10.2 
-ide103 – C++Builder 10.3 
-ide104 – C++Builder 10.4 

-langX Sets the linker localization language to X (eg. DE) 

-pl"Platform" Use the specified platform instead of the active platform. Only supported for 
XE3+ projects. (Win32, Win64, Android) 

-PVX.X.X.X Set product version information to the specified values. 

-threadsX Use this option to tell TwineCompile how many threads to use when 
compiling. 

 

MSBuild 
To build a MSBuild C++Builder project on the command-line using TwineCompile, you need to follow the steps below: 

1. Open the project file in Notepad, and locate the line: 

<Import Project="$(BDS)\Bin\CodeGear.Cpp.Targets" Condition="Exists('$(BDS)\Bin\CodeGear.Cpp.Targets')"/> 

 

2. After that line, add the following line, replacing the path and target file name with the path to your 

TwineCompile installation and the appropriate targets file for your IDE version: 

<Import Project="C:\Program Files (x86)\JomiTech\TwineCompile\<TwineCompile Target File>" /> 

 

3. Save the project file, and close Notepad. 

 

4. Open the RAD Studio Command prompt in the Start menu. 

 

5. Change the directory to the directory that contains your project using the cd command. 

 

6. Enter the following into the command prompt: 

MSBuild <projectname>.cbproj /t:Build 

 

7. Press Enter. 

Use the following table as a reference for the appropriate targets file to use on Step 2: 

C++Builder 10.4 TCTargets104.targets 

C++Builder 10.3 TCTargets103.targets 

C++Builder 10.2 TCTargets10Tokyo.targets 

 

Other Build Systems 
For any other build system, simply replace the invokation of bcc32, bcc32c, bcc32x or bcc64 with mtbcc32. mtbcc32 is 

located in the TwineCompile installation path and is a drop-in replacement for both the classic and CLANG compilers. 



Make sure that the build system passes all the files on the command-line to a single compile process. Invoking mtbcc32 

for each file separately will not allow TwineCompile to perform a multi-threaded build. 

You can additionally specify any of the following options to customize the TwineCompile build: 

-threadsX Use this option to specify how many files are to be compiled at once. If you 
do not use this option, TwineCompile will set this to the number of 
processors in your system. 
 
Use like this: -threads2 

-prog- This option stops TwineCompile from printing any progress info. All errors will 
still be printed out. 

-disablecaching If this option is present on the command-line, TwineCompile will not cache 
.c* and .h* files. 

-afiles This option will activate TwineCompile's non-PCH file system. Use with -
usepch- on projects without PCH injection or a common header file 

-usepch- This option disables TwineCompile's PCH system. Use on projects that do not 
use PCH injection or a common header file. 

-ideX Use this option to tell TwineCompile what compiler version to use when 
compiling. 
 
Note. You will need to have installed the IDE corresponding to the version 
you have selected. If you do not specify this option, TwineCompile will pick 
the first compiler found on the PATH environment variable. 
 
-ide5 – C++Builder 5 
-ide6 – C++Builder 6 
-ide2006 – C++Builder 2006 
-ide2007 – C++Builder 2007 
-ide2009 – C++Builder 2009 
-ide2010 – C++Builder 2010 
-ide2011 – C++Builder XE 
-ide2012 – C++Builder XE 2 
-ide2013 – C++Builder XE 3 
-ide2014 – C++Builder XE 4 
-ide2015 – C++Builder XE 5 
-ide2016 – C++Builder XE 6 
-ide2017 – C++Builder XE 7 
-ide2018 – C++Builder XE 8 
-ide10 – C++Builder 10.0 
-ide101 – C++Builder 10.1 
-ide102 – C++Builder 10.2 
-ide103 – C++Builder 10.3 
-ide104 – C++Builder 10.4 

-jb- Don't stop on errors. Setting this flag will make mtbcc32 continue compiling 
after a file failed to compile. 

-dep Enables dependency checking so that mtbcc32 only compiles files whose 
dependencies have been modified since the last compile. 

-priority Specifies the priority to use for the threads that are performing the compile. 
Specify as an integer from -2 to 2. 
 
Use like this: -priority2 



-maxcache Use this to restrict the amount of memory the executor processes can use to 
store cached files. Specify using the units K, M, G or T (kilobytes, megabytes, 
gigabytes or terabytes). 
 
Use like this: -maxcache256M. 

 

Support Resources 
 TwineCompile Homepage 

 TwineCompile Support Request 

 TwineCompile Support Forums 

Videos 
 TwineCompile - Introduction 

 TwineCompile – Using the Environment 

 TwineCompile – SORTA Compile 

 TwineCompile – Deep Dive 

 

http://jomitech.com/twine.php
http://jomitech.com/support2.php
http://jomitech.com/forums/viewforum.php?f=8
https://www.youtube.com/watch?v=Gv0tdZ6VYrs
https://www.youtube.com/watch?v=AW5Cs_xAO3s
https://www.youtube.com/watch?v=SizizJMPuDs
https://www.youtube.com/watch?v=EokraA6oJC4

